Skip to content

Unit 17: Abstract Class

Learning Objectives

After this unit, students should:

  • be familiar with the concept of an abstract class
  • know the use of the Java keyword abstract and the constraints that come with it.
  • understand the usefulness of defining and using an abstract class
  • understand what makes a class concrete

High-Level Abstraction

Recall that the concept of abstraction involves hiding away unnecessary complexity and details so that programmers do not have to be bogged down with the nitty-gritty.

When we code, we should, as much as possible, try to work with the higher-level abstraction, rather than the detailed version. Following this principle would allow us to write code that is general and extensible, by taking full advantage of inheritance and polymorphism.

Take the following example which you have seen,

contains v0.1 with Polymorphism
1
2
3
4
5
6
7
8
boolean contains(Object[] array, Object obj) {
  for (Object curr : array) {
    if (curr.equals(obj)) {
      return true;
    }
  }
  return false;
}

The function above is very general. We do not assume and do not need to know, about the details of the items being stored or searched. All we required is that the equals method compared if two objects are equal.

In contrast, someone whose mind focuses on finding a circle might write something like this:

contains v0.3 for Circle only
1
2
3
4
5
6
7
8
boolean contains(Circle[] array, Circle circle) {
  for (Circle curr : array) {
    if (curr.equals(circle)) {
      return true;
    }
  }
  return false;
}

The version above serves the purpose, but is not general enough. The only method used is equals, which Circle inherits/overrides from Object so using Circle for this function is too constraining. We can reuse this for any other subclasses of Circle, but not other classes.

Abstracting Circles

Now, let's consider the following function, which finds the largest area among the circles in a given array:

findLargest v0.1 with Circle
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
double findLargest(Circle[] array) {
  double maxArea = 0;
  for (Circle curr : array) {
    double area = curr.getArea();
    if (area > maxArea) {
      maxArea = area;
    }
  }
  return maxArea;
}

findLargest suffers from the same specificity as version 0.3 of contains. It only works for Circle and its subclasses. Can we make this more general? We cannot replace Circle with Object,

findLargest v0.2 with Object
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
double findLargest(Object[] array) {
  double maxArea = 0;
  for (Object curr : array) {
    double area = curr.getArea();
    if (area > maxArea) {
      maxArea = area;
    }
  }
  return maxArea;
}

since getArea is not defined for a generic object (e.g., what does getArea of a string mean?).

To allow us to apply findLargest to a more generic object, we have to create a new type — something more specific than Object that supports getArea(), yet more general than Circle.

Shape

Let's create a new class called Shape, and redefine our Circle class as a subclass of Shape. We can now create other shapes, Square, Rectangle, Triangle, etc, and define the getArea method for each of them.

With the new Shape class, we can rewrite findLargest as:

findLargest v0.3 with Shape
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
double findLargest(Shape[] array) {
  double maxArea = 0;
  for (Shape curr : array) {
    double area = curr.getArea();
    if (area > maxArea) {
      maxArea = area;
    }
  }
  return maxShape;
}

This version not only works for an array of Square, Rectangle, Circle, etc but also an array containing multiple shapes!

Let's actually write out our new Shape class:

1
2
3
4
5
class Shape {
  public double getArea() {
    // what is an area of an unknown shape?
  }
}

and rewrite our Circle:

Circle v0.8 extending from Shape
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import java.lang.Math;

/**
 * A Circle object encapsulates a circle on a 2D plane.
 */
class Circle extends Shape {
  private Point c;   // the center
  private double r;  // the length of the radius

  /**
   * Create a circle centered on Point c with given radius r
   */
  public Circle(Point c, double r) {
    this.c = c;
    this.r = r;
  }

  /**
   * Return the area of the circle.
   */
  @Override
  public double getArea() {
    return Math.PI * this.r * this.r;
  }

  /**
   * Return true if the given point p is within the circle.
   */
  public boolean contains(Point p) {
    // TODO: Left as an exercise
    return false;
  }

  /**
   * Return the string representation of this circle.
   */
  @Override
  public String toString() {
    return "{ center: " + this.c + ", radius: " + this.r + " }";
  }

  /**
   * Return true the object is the same circle (i.e., same center, same radius).
   */
  @Override
  public boolean equals(Object obj) {
    if (obj instanceof Circle) {
      Circle circle = (Circle) obj;
      return (circle.c.equals(this.c) && circle.r == this.r);
    }
  }
}

Notably, since our Shape is a highly abstract entity, it does not have any fields. One question that arises is, how are we going to write Shape::getArea()? We cannot compute the area of a shape unless we know what sort of shape it is.

One solution is to make Shape::getArea() return 0.

1
2
3
4
5
class Shape {
  public double getArea() {
    return 0;
  }
}

This is not ideal. It is easy for someone to inherit from Shape, but forget to override getArea(). If this happens, then the subclass will have an area of 0. Bugs ensue.

As we usually do in CS2030S, we want to exploit programming language constructs and rely on the compiler to check and catch such errors for us.

Abstract Methods and Classes

This brings us to the concept of abstract classes. An abstract class in Java is a class that has been made into something so general that it cannot and should not be instantiated. Usually, this means that one or more of its instance methods cannot be implemented without further details.

The Shape class above makes a good abstract class since we do not have enough details to implement Shape::getArea.

To declare an abstract class in Java, we add the abstract keyword to the class declaration. To make a method abstract, we add the keyword abstract when we declare the method.

An abstract method cannot be implemented and therefore should not have any method body.

This is how we implement Shape as an abstract class.

1
2
3
abstract class Shape {
  abstract public double getArea();
}

An abstract class cannot be instantiated. Any attempt to do so, such as:

1
Shape s = new Shape();

would result in an error.

Note that our simple example of Shape only encapsulates one abstract method. An abstract class can contain multiple fields and multiple methods. Not all the methods have to be abstract. As long as one of them is abstract, the class becomes abstract.

To illustrate this, consider

1
2
3
4
5
6
7
8
9
abstract class Shape {
  private int numOfAxesOfSymmetry ;

  public boolean isSymmetric() {
    return numOfAxesOfSymmetry > 0;
  }

  abstract public double getArea();
}

Shape::isSymmetric() is a concrete method but the class is still abstract since Shape::getArea() is abstract.

Note that the rule for declaring an abstract class is not symmetric. A class with at least one abstract method must be declared abstract. On the other hand, an abstract class may have no abstract method.

Concrete Classes

We call a class that is not abstract as a concrete class. A concrete class cannot have any abstract method. Thus, any concrete subclass of Shape must override getArea() to supply its own implementation.