
Final Assessment CS2030S AY20/21 Sem 2

NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING
FINAL ASSESSMENT FOR
Semester 2 AY2020/2021

CS2030S Programming Methodology II

April 2021 Time Allowed 120 minutes

INSTRUCTIONS TO CANDIDATES
1. This assessment paper contains 25 questions and comprises 21 printed pages, including this

page.

2. The total marks for this assessment is 80. Answer ALL questions.

3. This is a OPEN BOOK assessment. You are only allowed to refer to hardcopies materials.

4. All questions in this assessment paper use Java 11.

Final Assessment CS2030S AY20/21 Sem 2

Types (5 marks)
1. Consider the following code:

Integer i = 0;
Object o = (Number) i;

Which of the following statement(s), if any, is true?

A. The runtime type of o is Integer .

B. The compile-time type of i is Object .

C. i ’s compile-time type is inferred to be Number .
D. The type of i has been erased to Object .
E. The code would cause a compilation error.
F. The code would cause a run-time error.

Solution: This question assesses the understanding of basic concepts related to types.
The compile-time type of i is Integer ; for o is Object. Since i points to 0, o will also
points to 0. And so, o has the runtime type of Integer . Type inference is not involved since
all the types are spelled out. Type erasure is not involved since generics are not used. The
code would compile fine since we have a widening type conversion from Number to Object .
Only A is true.

Page 2

Final Assessment CS2030S AY20/21 Sem 2

Overriding (7 marks)
2. Consider the following definition of the classes Parent and ParentException :

class ParentException extends Exception {
}

class Parent<T> {
public <R> Parent<R> foo(Parent<? extends T> p) throws ParentException {

:
}

// insert class Child here
}

Which of the following definition(s), if any, of the nested class Child , when inserted into the
class above, will successfully override the method foo in Parent without compilation warning
or error?

A. // No @Override
private class Child<S> extends Parent<S> {
public <R> Parent<R> foo(Parent<? extends S> p) throws ParentException {

return null;
}

}

Solution: OK. It is OK to leave out @Override , which is just an annotation.

B. // Different exception thrown
private class Child<S> extends Parent<S> {
@Override
public <R> Parent<R> foo(Parent<? extends S> p) throws Exception {

return null;
}

}

Solution: Error. Since the child method is trying to throw a more general exception.
This behavior violates LSP and the Java compiler does not allow it.

C. // Different access modifier
private class Child<S> extends Parent<S> {
@Override
private <R> Parent<R> foo(Parent<? extends S> p) throws ParentException {

return null;
}

}

Solution: Error. Since the child method is now private, and can’t be accessed. This
behavior violates LSP and the Java compiler does not allow it.

D. // No exception thrown
private class Child<S> extends Parent<S> {
@Override

Page 3

Final Assessment CS2030S AY20/21 Sem 2

public <R> Parent<R> foo(Parent<? extends S> p) {
return null;

}
}

Solution: OK. A Child<S> instance that does not throw an exception can substitute a
Parent . No LSP is violated.

E. // Different return type
private class Child<S> extends Parent<S> {
@Override
public <R> Child<R> foo(Parent<? extends S> p) throws ParentException {

return null;
}

}

Solution: OK.We can return amore specific type (i.e., a subtype) whenwe override. We
discussed this in length in our recitation.

F. // Different parameter type
private class Child<S> extends Parent<S> {
@Override
public <R> Parent<R> foo(Parent<S> p) throws ParentException {

return null;
}

}

Solution: Error. Parent<S> and Parent<? extends S> are considered two different
types at compile time, despite both being erased to Parent after erasure.

G. // Different type variable
private class Child<S> extends Parent<S> {
@Override
public <T> Parent<T> foo(Parent<? extends S> p) throws ParentException {

return null;
}

}

Solution: OK. We are just using a different name for the type parameter. The new pa-
rameter T shadows the T declared in Parent<T> , but that is OK.

Page 4

Final Assessment CS2030S AY20/21 Sem 2

LSP (5 marks)
3. public class Card {

public final static int SPADES = 0;
public final static int HEARTS = 1;
public final static int DIAMONDS = 2;
public final static int CLUBS = 3;
private final int suit;
private final int cardNumber;

public Card(int suit, int cardNumber) {
this.suit = suit;
this.cardNumber = cardNumber;

}

public int getCardNumber() {
return this.cardNumber;

}
}

public class CardDeck {
private final static int cardTotal = 52;

public CardDeck() {
// Implementation removed
// Creates a card deck

}

/**
* Returns the number of cards in the deck that have a card number less than n.
*
* @param cards an array containing a deck of cards
* @param n the card number
* @return the number of cards in deck with a card number less than n
*/
public static int countCardsLessThanN(Card[] cards, int n) {

int count = 0;
for (int i = 0; i < cardTotal; i++) {

if (cards[i].getCardNumber() < n) {
count++;

}
}
return count;

}
}

Each card has a suit and a card number, for example, to create the two of spades you would use
new Card(Card.SPADES, 2);

If you wanted to create the king of hearts you would use new Card(Card.HEARTS, 13);

In order to handle the face cards (Ace, Jack, Queen, and King), someone decides to implement a
new FaceCard class, which inherits from Card .

public class FaceCard extends Card {
public final static int ACE = 0;
public final static int JACK = 1;
public final static int QUEEN = 2;

Page 5

Final Assessment CS2030S AY20/21 Sem 2

public final static int KING = 3;
private int faceType;

public FaceCard(int suit, int faceType) {
super(suit, -1);
this.faceType = faceType;

}
}

FaceCard violates the Liskov Substitution Principle. True or false? Explain your reasoning below.

Solution: Yes, it violates LSP. If we put FaceCard into the array cards and pass it into
countCardsLessThanN , the function would return a wrong answer, since a FaceCard al-
wayshave cardNumber initialized to -1 andwill always be countedby countCardsLessThanN .

Page 6

Final Assessment CS2030S AY20/21 Sem 2

Overloading (3 marks)
4. Consider the following class ArraySort . This is a class that contains many sort methods to allow

you to sort different types of Array s.

public class ArraySort {

public int sort(Array<String> arrayString) {
// Implementation omitted

}

public int sort(Array<Integer> arrayInteger) {
// Implementation omitted

}
}

This code will compile without warning or error. True or false?
Explaining your reasoning below.

Solution: False. We cannot overload two methods with the same method signature (after
type erasure).

Page 7

Final Assessment CS2030S AY20/21 Sem 2

Stack and Heap (4 marks)
Consider the following classes:

class ArtGallery {
// Line A
private Painting[] paintings = new Painting[2];

public void addPainting(Painting painting) {
paintings[ArtGallery.count] = painting;
// Line B

}
}

class Artist {
private String name;

public Artist(String name) {
this.name = name;

}

public String getName() {
return name;

}
}

class Painting {
private String name;
private Artist artist;

public Painting(String name, Artist artist) {
this.name = name;
// Line C

}
}

and the following main method:

public static void main(String[] args) {
Artist vanGogh = new Artist("Vincent van Gogh");
Painting starryNight = new Painting("Starry Night", vanGogh);
Painting sunflowers = new Painting("Sunflowers", vanGogh);
ArtGallery artGallery = new ArtGallery();
// Line D
// Line E

}

Consider the following diagram showing the stack, heap, and metaspace just after the end of Line
E. Note that (i) we simplified the content ofmetaspace and representation of strings in the diagram
for brevity, (ii) the items in the stack frame are from top to bottom, and (iii) args is not included
in the stack frame.

Page 8

Final Assessment CS2030S AY20/21 Sem 2

5. Complete LineA in the given code so that the stack/heap/metaspace corresponds towhat is shown
above.

Solution: private static int count = 0;

6. Complete Line B in the given code so that the stack/heap/metaspace corresponds towhat is shown
above.

Solution: count += 1;

7. Complete Line C in the given code so that the stack/heap/metaspace corresponds towhat is shown
above.

Solution: this.artist = new Artist(artist.getName());

8. Complete Lines D and E in the given code so that the stack/heap/metaspace corresponds to what
is shown above.

Solution:
artGallery.addPainting(starryNight);

artGallery.addPainting(sunflowers);

Page 9

Final Assessment CS2030S AY20/21 Sem 2

Exception (6 marks)
You are re-writing a program for the Marina Bay Sands hotel that was written by a student who
has not taken CS2030S! This program helps them check if guests are currently staying in the hotel
or if they have already checked out. You have encountered a method called checkGuestStatus ,
which will return false if a guest is already checked out, and true if the guest is still staying.
This program includes a new type of exception called NoSuchGuestException , which directly
inherits from RuntimeException . In addition, you have a method called lookUpGuest , which
will return the guest details and return them if they are present. Otherwise, the lookUpGuest

method throws the NoSuchGuestException exception.

public boolean checkGuestStatus(String name) {
try {

lookUpGuest(name);
return true;

} catch (NoSuchGuestException e) {
return false;

} catch (Exception e) {
return false;

}
}

9. With regards to exceptions in Java and the code above, which of the following statements are true?

A. A method that might throw an unchecked exception requires a try-catch block around its
invocation.

B. Checked exceptions are used for errors that the programmer cannot foresee.
C. In Java, exceptions are primitives.
D. NoSuchGuestException is an unchecked exception.

Solution: Unchecked exceptions do not require a try-catch block. Checked exceptions do –
so the programmer anticipates (foresee) that a checked exception will happen. Exceptions
are reference types.
The answer is D. All exceptions inherit from RuntimeException are unchecked exceptions.

10. There are several design problems with this program, the checkGuestStatus method, and the
NoSuchGuestException exception.
In one sentence, name one major problem with this design and why it is a problem.

Solution: There are several issues. You just need to name one.

• Theprogrammer is using exception as flowcontrol. A betterwaywould be for lookUpGuest
to return a boolean to indicate if a guest exists.

• The second catch catches all possible exceptions. This is the Pokémon exception and
should be avoided.

• NoSuchGuestException is something that the programmer anticipates so it should be
a checked exception instead.

Page 10

Final Assessment CS2030S AY20/21 Sem 2

Generics (9 marks)
Ah Beng wrote the following class:

import cs2030s.fp.Transformer;

class Sure<T> {
private T x;

private Sure(T x) {
this.x = x;

}

public static <T> Sure<T> of(T x) {
return new Sure<T>(x);

}

// map inserted here
}

He wanted to add a method map to the class above. For each possible method header of map
below, indicate which of the corresponding statement(s) would lead to a compilation error. You
can assume that Ah Beng implemented the method map correctly so that there is no compilation
error in the class Sure<T> .

11. If Ah Beng declared the method map as follows:

public <R> Sure<?> map(Transformer<T, ? extends R> f) {
:

}

Which of the following statement(s) would lead to a compilation error?

Sure<?> s1 = Sure.of("hello").map(str -> str.length()); // Statement A

Sure<Integer> s2 = Sure.of("hello").map(str -> str.length()); // Statement B

Transformer<String, Number> str2len = str -> str.length();
Sure<Integer> s3 = Sure.of("hello").map(str2len); // Statement C

Solution: The lambda expression str -> str.length() is passed as parameter to map .
Through type inference, T will have the type of String , and R will have the type Integer .
Statement A compiles without error.
Sure<?> is a supertype of Integer . Statements B and C cannot compile.

12. If Ah Beng declared the method map as follows:

public Sure<? extends Number> map(Transformer<T, ? extends Object> f) {
:

}

Which of the following statement(s) would lead to a compilation error?

Page 11

Final Assessment CS2030S AY20/21 Sem 2

Sure<?> s1 = Sure.of("hello").map(str -> str.length()); // Statement A

Sure<Integer> s2 = Sure.of("hello").map(str -> str.length()); // Statement B

Transformer<String, Number> str2len = str -> str.length();
Sure<Integer> s3 = Sure.of("hello").map(str2len); // Statement C

Solution: Consider ExpressionA. The lambda expression str -> str.length() is passed as
parameter to map . Through type inference, T will have the type of String . str.length()

returns an int and so the expression str -> str.length() matches the type:

Transformer<T, ? extends Object> .

The return type is Sure<? extends Number> , which is a subtype of Sure<?> . So, Statement
A compiles without error.
Sure<? extends Number> is a supertype of Integer . Statements B and C cannot compile.

13. If Ah Beng declared the method map as follows:

public <R> Sure<R> map(Transformer<T, R> f) {
:

}

Which of the following statement(s) would lead to a compilation error?

Sure<?> s1 = Sure.of("hello").map(str -> str.length()); // Statement A

Sure<Integer> s2 = Sure.of("hello").map(str -> str.length()); // Statement B

Transformer<String, Number> str2len = str -> str.length();
Sure<Integer> s3 = Sure.of("hello").map(str2len); // Statement C

Solution: Consider Expression A. The lambda expression str -> str.length() is passed
as parameter to map . Through type inference, T will have the type of String and R the
type Integer . The return type is Sure<R> , which is Sure<Integer> , which is a subtype of
Sure<?> . So, Statement A, again, compiles without error. So is Statement B.
For Statement C, if R is inferred to be Integer , the return type matches, but the type of the
parameter is incorrect (Transformer<String, Number> insteadof Transformer<String, Integer ,
which are invariant). But if R is inferred to be Number , the return type does not match
(Sure<Number> instead of Sure<Integer> , which are again invariant). So Statement C can-
not compile.

Page 12

Final Assessment CS2030S AY20/21 Sem 2

Streams (8 marks)
This question will require you to create a stream pipeline by selecting each component of the
pipeline. You are to create a stream that contains the following elements:
1A, 1B, 2A, 2B, 4A, 4B, 5A, 5B, 7A, 7B, .., 14A, 14B
Note: any number that is divisible by 3 is not present in the stream.
You may use the following list in your pipeline:

List<String> strings = List.of("A", "B");

Some helpful stream methods:

• Stream<T> filter(Predicate<? super T> predicate) Returns a stream consisting of
the elements of this stream that match the given predicate .

• <R> Stream<R> map(Function<? super T, ? extends R> mapper) Returns a streamcon-
sisting of the results of applying the given function to the elements of this stream.

• <R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper)
Returns a stream consisting of the results of replacing each element of this stream with the
contents of a mapped stream produced by applying the provided mapping function to each
element.

• Stream<T> takeWhile(Predicate<? super T> predicate) Returns, if this stream is or-
dered, a stream consisting of the longest prefix of elements taken from this stream that
match the given predicate . Otherwise returns, if this stream is unordered, a stream con-
sisting of a subset of elements taken from this stream that match the given predicate.

• Stream<T> limit(long maxSize) Returns a streamconsisting of the elements of this stream,
truncated to be no longer than maxSize in length.

• static <T> Stream<T> of(T... values) Returns a sequential ordered stream whose el-
ements are the specified values.

• static <T> Stream<T> generate(Supplier<? extends T> s) Returns an infinite sequen-
tial unordered stream where each element is generated by the provided Supplier.

• static <T> Stream<T> iterate(T seed, UnaryOperator<T> f) Returns an infinite se-
quential ordered Stream produced by iterative application of a function f to an initial ele-
ment seed, producing a Streamconsisting of seed, f(seed), f(f(seed)), etc. (Note UnaryOperator<T>

is equivalent to Function<T, T>)

You can convert a List instance to a Stream using the method List::stream() , and from a
Stream to a List using the method Stream::collect (passing in Collectors.toList() as
argument).

14. First, choose the data source:

A. Stream.generate(() -> x + 1)

B. Stream.of(1, 2, 4, 5, ..)

C. Stream.iterate(1, x -> x + 1)

D. Stream.of("A", "B")

15. Choose the next intermediate operation:

A. .filter(i -> i % 3 == 0)

Page 13

Final Assessment CS2030S AY20/21 Sem 2

B. .filter(i -> i % 3 != 0)

C. .flatMap(y -> strings.stream().map(z -> y + z))

D. .map(y -> strings.stream().flatMap(z -> y + z))

16. Choose the next intermediate operation:

A. .flatMap(y -> strings.stream().map(z -> y + z))

B. .map(y -> strings.stream().flatMap(z -> y + z))

C. .filter(i -> i % 3 == 0)

D. .filter(i -> i % 3 != 0)

17. Choose the terminal operation:

A. .collect(Collectors.toList());

B. .takeWhile(r -> r < 14);

C. .limit(20);

D. .limit(14);

Solution: The full pipeline is:

Stream.iterate(1, x -> x + 1)
.filter(i -> i % 3 != 0)
.flatMap(y -> strings.stream().map(z -> y + z))
.limit(20)

So the answer is C, B, A, C.

Page 14

Final Assessment CS2030S AY20/21 Sem 2

Erasure (4 marks)
18. Consider the class below.

public class Dictionary<T extends Comparable<T>, S> {
Maybe<T> key;
S value;

public Dictionary(Maybe<T> key, S value) {
this.key = key;
this.value = value;

}
}

What is the type of key after type erasure?

A. Object

B. Comparable<Maybe>

C. Maybe

D. Comparable

E. Maybe<Comparable>

F. Maybe<Object>

Solution: key is a parameterized type. Type erasure removes all type arguments and type
parameters of parameterized types, so the type of key after erasure is Maybe .

19. Consider the class below.

public class Dictionary<T extends Comparable<T>, S> {
Maybe<T> key;
S value;

public Dictionary(Maybe<T> key, S value) {
this.key = key;
this.value = value;

}
}

What is the type of value after type erasure?

A. Object

B. S

C. Array

D. Value

E. T

F. Comparable

Page 15

Final Assessment CS2030S AY20/21 Sem 2

Solution: value has the type S , which is an unbounded type parameter. All unbounded
type parameter are replaced with Object after erasure.

Page 16

Final Assessment CS2030S AY20/21 Sem 2

Lambdas (8 marks)
Consider the following simple monad Box<T> . As we have learned, a Box<T> can store a value
of any type inside.

import cs2030s.fp.Transformer;

class Box<T> {
private T x;

private Box(T x) {
this.x = x;

}

public static <T> Box<T> of(T x) {
return new Box<>(x);

}

public T get() {
return x;

}

public <R> Box<R> map(Transformer<? super T, ? extends R> t) {
return new Box<>(t.transform(x));

}
}

Since functions, in the form of lambda expressions, are first-class citizens in Java, we can store a
lambda expression in a Box<T> too.

20. Consider the following two transformers:

Transformer<Integer, Integer> f = x -> x + 1;
Transformer<Integer, Integer> g = x -> x * 2;

We put f in a Box<T> object:

Box<Transformer<Integer, Integer>> box;
box = Box.of(f);

We can now use map to transform our lambda expressions. First, let’s suppose we want to com-
pose the function inside the box with another function.
Show how you can compose g with f using map to get the function x -> (x + 1) * 2 by
filling in the missing argument of the map method below.

box = box.map(???);
box.get().transform(4); // should return 10;

Note that you should not hard-code the function x -> (x + 1) * 2 in your answer. You answer
should work for any g and for any function in box .

Solution: ff -> x -> g.transform(ff.transform(x))

21. In ourmodule, wehave two functional interfaces to represent functions, cs2030s.fp.Transformer ,
and java.util.function.Function . It is sometimes useful to change between the two.

Page 17

Final Assessment CS2030S AY20/21 Sem 2

Fill in the missing argument ??? to map in the line of code below, which converts the lambda
expression of type Transformer<Integer, Integer> , to Function<Integer, Integer> .

Transformer<Integer, Integer> incr = x -> x + 1;
Box<Transformer<Integer, Integer>> box;
box = Box.of(incr);
Box<Function<Integer, Integer>> box2 = box.map(???);

The functional method for java.util.function.Function is called apply (you may or may
not need this information to answer this question).

Solution: ff -> x -> ff.transform(x)

Page 18

Final Assessment CS2030S AY20/21 Sem 2

Monad (10 marks)
Consider the following monad, Monad<T> ,

import cs2030s.fp.Transformer;

class Monad<T> {
private T x;

private Monad(T x) {
this.x = x;

}

public static <T> Monad<T> of(T x) {
return new Monad<>(x);

}

public T get() {
return x;

}

public <R> Monad<R> flatMap(Transformer<? super T, ? extends Monad<? extends R>> f) {
return new Monad<>(f.transform(this.x).get());

}

public <R> Monad<R> map(Transformer<? super T, ? extends R> f) {
return flatMap(???);

}
}

22. Complete the implementation of map using only flatMap so that the resulting Monad<T> that
satisfies the functor laws.

Solution: x -> Monad.of(f.transform(x))

23. Show that the monad Monad<T> preserves composition and therefore meets one of the require-
ments of being a functor. The skeleton of the proof is given below. Fill in the blanks by completing
the Expressions A, B, and C, as well as two monad laws we use.
Suppose we have an instance of Monad<T> called m and two functions f and g .

m.map(x -> f(x)).map(x -> g(x))

is equivalent to the following Expression A based on the implementation above:
m.flatMap(x -> Monad.of(f(x))).flatMap(x -> Monad.of(g(x))) (Expression A)
Invoking Monad’s Associative Law, Expression A is equivalent to Expression B below,
m.flatMap(x -> Monad.of(f(x)).flatMap(x -> Monad.of(g(x)))) (Expression B)
Invoking Monad’s Left Identity Law, Expression B is equivalent to Expression C below,
m.flatMap(x -> Monad.of(g(f(x)))) (Expression C)
which, by our implementation, is equivalent to
m.map(x -> g(f(x)))

Therefore, the composition of functions is preserved in our implementation.

Page 19

Final Assessment CS2030S AY20/21 Sem 2

CompletableFuture (8 marks)
24. We have an incomplete program below:

import java.util.concurrent.CompletableFuture;
import java.util.function.Function;

class Main {

private static void doSomething() {
:

}

private static Function<Integer,Integer> plus(int i) {
return x -> {

doSomething();
System.out.println(x + i);
return x + i;

};
}

public static void main(String args[]) {
CompletableFuture<Integer> ten =

CompletableFuture.supplyAsync(() -> 10);

// Line X

}
}

The method doSomething() runs for an indeterministic amount of time. Its method body has
been omitted.
Consider the following code snippets to be inserted into themethod main after the declaration of
variable ten (starting at the line marked Line X) and the possibilities of what could be printed.
You may assume that doSomething() does not print anything.
Select all options that are TRUE.

A. If we write
ten.thenApply(plus(1)).thenApply(plus(10)).thenApply(plus(5));

the program will always print
11
21
26

every time it is executed.

Solution: The intended answer is FALSE. The CompletableFuture is not join()-ed. So
the program can exit without all three numbers printed. If anything is printed, it will be
in the order shown.
However, in the toy programwewrote, there are no other tasks. It appears that Java VM
will schedule the main thread to run () -> 10 (and therefore, the rest of the plus

calls). So, despite having not having a join() , the programwill still exit after the main
thread exits, and all three numbers will be printed in order.

Page 20

Final Assessment CS2030S AY20/21 Sem 2

For this option, we will accept both TRUE and FALSE as correct.

B. If we write
CompletableFuture<Integer> cf = ten.thenApply(plus(1));
cf.thenApply(plus(10)).join();
cf.thenApply(plus(5)).join();

the program will always print
11
21
16

every time it is executed.

Solution: TRUE. join() ensures that the program exists only after all three numbers
are printed. Due to the join() in the second line, the third line will always be executed
after the second line completes. Thus, the numbers will always be printed and printed
in order.

C. If we write
CompletableFuture<Integer> cf = ten.thenApply(plus(1));
cf = cf.thenApplyAsync(plus(10));
cf.thenApplyAsync(plus(5)).join();

the program will always print
11
21
26

every time it is executed.

Solution: TRUE. join() ensures that the program exists only after all three numbers
are printed. Since the completable future chains them in order, the numbers will be
printed in order.

D. If we write
CompletableFuture.allOf(

ten.thenApplyAsync(plus(1)),
ten.thenApplyAsync(plus(10)),
ten.thenApplyAsync(plus(5))

).join();

the program will always print
11
20
15

every time it is executed.

Page 21

Final Assessment CS2030S AY20/21 Sem 2

Solution: FALSE. join() only ensures that the program exists only after all three numbers
are printed, but not the order of the numbers are printed.

Page 22

Final Assessment CS2030S AY20/21 Sem 2

Fork and Join (3 marks)
Consider the following variation of the class Summer , where we split the task into three smaller
subtasks: left , mid , and right .

import java.util.concurrent.RecursiveTask;

class Summer extends RecursiveTask<Integer> {
private static final int FORK_THRESHOLD = 5;
private int low;
private int high;
private int[] array;

public Summer(int low, int high, int[] array) {
this.low = low;
this.high = high;
this.array = array;

}

@Override
protected Integer compute() {

if (high - low < FORK_THRESHOLD) {
int sum = 0;
for (int i = low; i < high; i++) {
sum += array[i];

}
return sum;

}

int onethird = low + (high - low) / 3;
int twothird = onethird + (high - low) / 3;

Summer left = new Summer(low, onethird, array);
Summer mid = new Summer(onethird, twothird, array);
Summer right = new Summer(twothird, high, array);

:
}

}

25. Which of the following options achieves the highest level of parallelism?

A. left.fork();
right.fork();
return right.join() + left.join() + mid.compute();

B. right.fork();
left.fork();
return mid.compute() + left.join() + right.join();

C. mid.fork();
return left.compute() + mid.join() + right.compute();

D. right.fork();
left.fork();
return left.join() + mid.compute() + right.join();

Page 23

Final Assessment CS2030S AY20/21 Sem 2

Solution: First, note that the highest level of parallelism does not mean the most efficient,
due to the overhead of creating a task.
Option A runs mid sequentially after left and right .

Option B runs left , right , and mid parallelly.

Option C runs right sequentially after mid and left .

Finally, option D runs mid sequentially after left .
So the B has the highest level of parallelism.

END OF PAPER

Page 24

